
Jaf, S a r d a r a n d Cald er, Calu m (201 9) De e p Le a r nin g for N a t u r al
Lan g u a g e Pa r sing. IEEE Access, 7 (1). p p . 1 3 1 3 6 3-1 3 1 3 7 3. ISS N
2 1 6 9-3 5 3 6

Downloa d e d fro m: h t t p://su r e . s u n d e rl a n d. ac.uk/id/e p rin t /11 1 8 5/

U s a g e g u i d e l i n e s

Ple a s e r ef e r to t h e u s a g e g uid elines a t
h t t p://su r e . s u n d e rl a n d. ac.uk/policies.h t ml o r al t e r n a tively con t ac t
s u r e@s u n d e rl a n d. ac.uk.

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Deep Learning for Natural Language
Parsing
SARDAR JAF1, and Calum Calder.2
1Faculty of Technology, School of Computer Science, The University of Sunderland, Sunderland, UK (e-mail: sardar.jaf@sunderland.ac.uk)
2Department of Computer Science, Durham University, Durham, UK (e-mail: calum.calder@durham.ac.uk)

Corresponding author: Sardar Jaf (e-mail: sardar.jaf@sunderland.ac.uk).

ABSTRACT Natural language processing problems (such as speech recognition, text-based data mining,
and text or speech generation) are becoming increasingly important. Before effectively approaching many
of these problems, it is necessary to process the syntactic structures of the sentences. Syntactic parsing
is the task of constructing a syntactic parse tree over a sentence which describes the structure of the
sentence. Parse trees are used as part of many language processing applications. In this paper, we present
a multi-lingual dependency parser. Using advanced deep learning techniques, our parser architecture
tackles common issues with parsing such as long-distance head attachment, while using ‘architecture
engineering’ to adapt to each target language in order to reduce the feature engineering often required for
parsing tasks. We implement a parser based on this architecture to utilize transfer learning techniques to
address important issues related with limited-resourced language. We exceed the accuracy of state-of-the-
art parsers on languages with limited training resources by a considerable margin. We present promising
results for solving core problems in natural language parsing, while also performing at state-of-the-art
accuracy on general parsing tasks.

INDEX TERMS BiLSTM parsing, deep learning, dependency parsing, natural language processing,
parsers, shift-reduce parsing, syntactic parsing, transition-based parsing

I. INTRODUCTION

NTURAL language parsing problems involve determin-
ing the syntactic structure (parse tree) of a sentence,

which describes its grammatical structure. The two main
types of parsing are dependency parsing and constituency
parsing. Dependency parse trees are build over direct rela-
tions between words or other tokens in a sentence, whereas
constituency parse trees are based on the parse trees of
formal grammars. The different sentence structure represen-
tation by dependency parsers and constituency parsers are
presented in Fig. 2a and 2b.

Determining a parse tree of a sentence forms the basis
for many other natural language tasks, particularly semantic
analysis tasks [1], such as sentiment analysis, information
extraction and question interpretation by proving a data
structure (parse tree) which encodes more information about
a piece of text than the raw text alone.

One of the main types of parsing for natural language text
is dependency parsing. Dependency parsing is based on the
dependency relation formalism. In this formalism, tokens are
associated with each other directly. Each token, excluding

the tree’s root token, is dependent on an associated ‘head’
token. Dependents are associated with their head through
‘dependency arcs’, which can optionally be labeled to pro-
vide additional (grammatical) information about the relation.
Associating tokens via a dependency arc is sometimes called
‘head attachment’.

In the dependency relation formalism, a distinction is
made between ‘projective’ and ‘non-projective’ dependency
trees. Projective trees are, in simple terms, dependency
trees without any intersecting arcs. Fig. 1 demonstrates an
example of non-projective dependency parse tree and Fig. 2
and Fig. 3 show a projective dependency parse tree.

The varying amounts of data makes designing a parser
that is effective on multiple languages presents a challenge;
each language has unique grammatical rules and to be
effective on multiple languages a parser should be agnostic
to these differences in structure. In contrast to this, it is
reasonable to expect that the most accurate parser for a
single language would have features designed around that
language. The dependence upon data in data-driven parsing,
however, does introduce with it the task of generating quality

VOLUME 4, 2016 1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1: An example of a non-projective parse tree.

(a) A constituency tree representing the structure of the sentence
‘the man hit the ball’

(b) A dependency tree representing the structure of the sentence
‘the man hit the ball’.

FIGURE 2: Constituency and dependency structures for
the sentence ‘the man hit the ball’.

treebanks or data sources. For some languages with little,
or no available data this becomes an issue. In this paper we
explore the way a deep learning algorithm could learn from
large data sources of similar languages to a target language
and parse the target language with promising result.

A fundamental problem in parsing is the inherent am-
biguity in language [2]–[5]; often sentences have multiple
valid interpretations, and additional context is required to
differentiate between these interpretations. Given that a
sentence may have multiple valid parse trees, as that shown
in Fig. 3a and Fig. 3b, a good parser should make some
attempt at differentiating between the parse trees to select
the most likely valid tree. Much of statistical parsing and
data-driven parsing aims to solve this problem.

One of the main benefits of using machine learning
classifiers, such as Bidirectional Long Short Term Memory
(BiLSTM), is it can overcome the issue of ambiguity in
natural language sentences.

The main contribution of this work are:

(a) The interpretation of ‘I saw an elephant in my pyjamas’ is that a
person sees the elephant wearing pyjamas.

(b) This interpretation of ‘I saw an elephant in my pyjamas’ is the
person seeing the elephant is wearing pyjamas.

FIGURE 3: Example of an ambiguous sentence that
results in two different parse trees.

1) The development of a multi-lingual parser by utiliz-
ing an advanced form of Recurrent Neural Network
(RNN), specifically Bidirectional Long Short Term
Memory (BiLSTM).

2) We empirically demonstrate the potential of BiLSTM
algorithm for treating long distance dependency rela-
tions problem in natural language parsing, which is
often an issue with transition-based parsers.

3) Our proposed architecture improves language agnos-
ticism by reducing feature engineering.

4) Our proposed approach significantly reduces the spar-
sity of data for predicting labels of dependency rela-
tions.

5) Our proposed parser improves the accuracy of data-
driven parsers for languages with limited resources by
utilizing transfer learning technique.

The remainder of this paper is organized as follows.
Section II presents the related work to parsing natural
language text. The proposed approach and a discussion of
the parser architecture is presented in Section III. Section IV
shows our empirical results of the parser performance and
Section V concludes the paper.

II. RELATED WORK
The development of dependency grammars is typically
associated with the work of Lucien Tesnière in Éléments
de syntaxe structurale [1, p. 268]. Since around 2013
computational linguistics community shifted its focus away
from constituency parsing and started utilizing dependency

2 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

structures in data-driven parsing. The dependency structure
representation for an English sentence is demonstrated in
Fig. 2, 2b and 3.

An approach to natural language dependency parsing is
based on shift-reduce algorithms, also known as transition-
based parsing. In transition-based parsing the input is
processed incrementally from left-to-right, with the parser
making transitions between states according to the current
configuration of the parser, generally guided by some clas-
sifier.

As the core component of many parsers in some data-
driven models, machine learning algorithms have seen a lot
of use in parsing. With the recent rise of deep learning,
there has been a natural trend towards experimenting with
deep learning models for parsing natural language text.
Deep learning has been particularly effective across natural
language tasks when compared to more classic machine
learning processes, and this is especially true of parsing.

Graph-based approaches have also proved effective, espe-
cially when used alongside machine learning models. From
[7] we see that when using BiLSTM feature embedding the
performance of graph-based models may in fact be greater
than transition-based systems for long-distance parsing, such
as for parsing Chinese sentences. In this paper, we elected
not to explore graph-based parsing, as the computational
complexity of graph-based parsers (O(n2) in the length of
the sentence) results in poorer scaling than most transition-
based parsers.

Transition-based algorithms were developed for natural
language parsing that operate on probabilistic Context Free
Grammars [8]. Similar methods were developed for incre-
mentally parse dependency trees [9]. Transition-based parser
algorithms allow parsing of a sentence in linear time with
respect to the length of the sentence by making a series of
transitions between parser configurations, guided by some
‘oracle’.

Gold oracles — oracles that when given a perfectly parsed
‘gold’ tree provide a transition sequence that produces the
tree — are used for producing parse tree from training data.
Using the gold oracle, sequences of parser configurations
and resulting transitions can be produced from a treebank
to be used to train a classifier to approximate this oracle.
Such an oracle is presented as Table 1 in [10] for Nivre’s arc-
eager parser. One issue with typical gold oracles is that they
depend on all previous transitions to be correct [10], [11].
An extension to this idea, therefore, is the dynamic oracle.
Dynamic oracles use a gold tree to produce the optimal
transition in a given configuration regardless of the previous
states of the parser, and allow for ‘error exploration’ —
allowing the parser to make mistakes during parsing allows
the parser to learn to recover from mistakes made during
parsing. As transition-based parsing is very dependent on
previous transitions [12], this method has been used in many
parsers in an attempt to improve accuracy [7], [10], [11] with
varying success.

The transition-based algorithms require some way to

assign a score to each transition given the configuration of
the parser. Nivre [13], [14] describes an ‘oracle’ which
provides the optimal transition at each configuration in order
to perfectly parse a sentence. In practice, this is typically
achieved by using machine learning algorithms to approxi-
mate this oracle. Following his earlier theoretical work, [13]
present a concrete implementation of a dependency parser
which utilizes instance-based learning through TiMBL, a
framework based on the k-Nearest Neighbor algorithm [15].
In a similar effort, [16] propose a dependency parser which
utilizes a Support Vector Machine to infer transitions for
their own shift-reduce algorithm. Support Vector Machines
(SVMs) have been used quite successfully in parsing tasks,
including both chunk parsing methods for constituency
parsing [17], and dependency parsing through shift-reduce
algorithms [14], [16], [18]. Similary, [3], [19] utilized
various tree based classifiers for dependency parsing using
transition-based algorithm. A particularly noteworthy parser
is MaltParser [20] which has options to utilize either an
SVM, or TiMBL as its underlying learning algorithm and
was regarded as state-of-the-art for a time.

With the recent rise in interest in deep learning, parsing
seems to be an excellent area to apply these techniques,
and transition-based parsing is classification problems. Deep
learning has excelled at these tasks, and as such provides a
natural fit for this class of problem.

In deep learning, recurrent neural networks operate on
sequential data, and as such have been used frequently in
natural language tasks [21, p. 163]. Long Short Term Mem-
ory (LSTM) in particular has been used with some success,
including in parsing tasks [22], [23]. These attempts have
generally looked to apply the sequential aspect of the LSTM
to the sequence of transitions used in a transition-based
parser, and are based around a novel kind of LSTM, the
Stack-LSTM [22]. An alternative approach utilized in recent
years uses BiLSTMs; the sequence of tokens in a sentence is
taken as the input to a sequence-to-sequence BiLSTM model
which generates a dense feature embedding to be used as
the input to another model to parse the sentence. [24], for
example, use the feature embedding as a pre-processing step
in their graph-based parser, whereas [7] and [25] utilize
a BiLSTM feature embedding as an embedding layer to
transition-based parsers, achieving good results with only
a simple multi-layer perceptron (MLP) to guide the parser.
A parser architecture such as this means that the feature
engineering required is effectively eliminated, albeit with
some trade-off in the form of computational complexity, due
to the complexity of a multi-layer BiLSTM.

For this paper, particularly relevant is the use of a deep
learning classifier as the oracle to a transition-based parser.
One of the first major implementations of a dependency
parser backed by a neural network as its learning algorithm
is the Stanford parser [12]. Chen and Manning in [12]
were able to significantly reduce the amount of feature
engineering required by utilizing few dense features, rather
than ‘millions of sparse indicator features’ typically required

VOLUME 4, 2016 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: The transitions defined by Nivre’s arc-eager parser.

Action State transition Precondition

Left-Arcl (σ|i, j|β,A)→ (σ, j|β,A ∪ {(j, l, i)}) ¬[i = 0] ∩ ¬[∃k∃l′s.th.(k, l′, i) ∈ A]
Right-Arcl (σ|i, j|β,A)→ (σ|i|j, β,A ∪ {(i, l, j)}) ¬[∃k∃l′s.th.(k, l′, j) ∈ A]
Shift (σ, i|β,A) → (σ|i, β, A)
Reduce (σ|i, β, A) → (σ, β,A) ∃k∃l′s.th.(k, l′, i) ∈ A

TABLE 2: The transitions defined by Nivre’s arc-standard parser.

Action State transition Precondition

Left-Arcl (σ|i, j|β,A)→ (σ, j|β,A ∪ {(j, l, i)}) ¬[i = 0] ∩ ¬[∃k∃l′s.th.(k, l′, i) ∈ A]
Right-Arcl (σ|i, j|β,A)→ (σ, i|β,A ∪ {(i, l, j)}) ¬[∃k∃l′s.th.(k, l′, j) ∈ A]
Shift (σ, i|β,A) → (σ|i, β, A)

by other solutions in order to increase parsing speed by
eliminating the need to generate such features, increase
generality, and to reduce the complexity of the parser. Much
of the research in deep learning for parsing has had similar
aims – [7] present a parser utilizing a BiLSTM layer, taking
only the sequence of words and associated part-of-speech
tags (POS) in a sentence as input, and allowing the BiLSTM
to build the feature embedding using a sequence-to-sequence
architecture before using a multi-layer perceptron to classify
transitions.

III. SOLUTION
A. TRANSITION BASED PARSING
In this paper, we elected to use a transition-based parser. We
are motivated to use this algorithm because it is efficient,
simple to implement given their straightforward design and
many state-of-the-art parsers are based on either the arc-
standard or arc-eager shift-reduce algorithms. Whilst simple
to implement and understand, these algorithms remain effec-
tive as parsing algorithms, allowing design efforts to focus
primarily on the neural network model. One particularly
appealing aspect of shift-reduce parsers is their efficiency
— with O(n) run-times in the length of the sentence, few
calls to the model need to be made.

We follow Nivre’s notation [9], [14] to outline the arc-
standard and arc-eager parsing algorithms. These are pre-
sented in Table 1 and Table 2

Nivre’s algorithms maintain a parser state, or ‘configu-
ration’, which is mutated via some simple state transition
functions (shift and reduce functions). Configurations are
generally based around at least one ‘stack’ σ which main-
tains an ordered list of the tokens currently being operated
on, a ‘buffer’ β which is an ordered list of the tokens yet
to be operated on, and a set of labeled dependency arcs A.
After reaching a terminal state (generally when |β| = 0), the
parser terminates and returns the arcs made between words
A as a set of 3-tuples of the form (head, label, child) where
head and child are token IDs, and label is a dependency
relation associating the two tokens.

By utilizing a shift-reduce parser, we also gain the ability
to swap between shift-reduce algorithms and can explore the

TABLE 3: Parsing ‘We1 swam2 at3 the4 beach5’ using
Nivre’s arc-eager parser.

Steps Configuration Action

1 ([1], [2, 3, 4, 5], A = {}) Left-Arcnsubj
2 ([], [2, 3, 4, 5], A) Shift
3 ([2], [3, 4, 5], A) Right-Arcprep
4 ([2, 3], [4, 5], A) Shift
5 ([2, 3, 4], [5], A) Left-Arcdet
6 ([2, 3], [5], A) Right-Arcpobj
7 ([2, 3, 5], [], A)

effects these changes have on the parser, provided that a gold
oracle for that parsing algorithm exists in order to generate
the dataset. For example, we could substitute the parsing
algorithm for Covington’s algorithm [26], or Nivre’s list-
based parser [14] for an expected O(n) (worst-case O(n2))-
time non-projective parser.

In this paper, we use Nivre’s arc-eager algorithm. The arc-
eager algorithm attempts to produce shorter parse sequences
than other shift-reduce parsers by connecting arcs as early
as possible [14], and by connecting arcs as early as possible,
the parser should have less of an issue with long-distance
parsing. With the arc-standard parser, there may be cases
where the parser is in a configuration with two tokens
i, j at the top of the stack σ and bottom of the buffer β
respectively, with (i, l, j) being an arc in the gold tree,
however according to the rules of the shift-reduce parser,
(i, l, j) should not be added yet as some descendant of j
has not yet been connected to its head. In such a case, the
oracle would require knowledge of which descendants of
j had already been assigned a head to guarantee a correct
parse tree. By disallowing the model to add an arc as soon as
it sees two words which should be connected, we eliminate
this problem.

For an example of this behavior, we present the parsing
steps in Table 3 and Table 4 for parsing the sentence ‘We1
swam2 at3 the4 beach5’.

Notice in Table 4 that the parsing diverges at step 3,
as we cannot yet form a right arc between swam2 and
at3, when using the arc-standard parser; the rule Right-Arc
(σ|i, j|β,A)→ (σ, i|β,A) at configuration ([2], [3, 4, 5], A)

4 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 4: Parsing ‘We1 swam2 at3 the4 beach5’ using
Nivre’s arc-standard parser.

Steps Configuration Action

1 ([1], [2, 3, 4, 5], A = {}) Left-Arcnsubj
2 ([], [2, 3, 4, 5], A) Shift
3 ([2], [3, 4, 5], A) Shift
4 ([2, 3], [4, 5], A) Shift
5 ([2, 3, 4], [5], A) Left-Arcdet
6 ([2, 3], [5], A) Right-Arcpobj
7 ([2], [3], A) Right-Arcprep
8 ([], [2], A) Shift
9 ([2], [], A)

would remove the token at3 from the parser configuration
and prevent its descendants (beach5) being assigned their
proper head. The Right-Arc operation joining ‘swam2’ and
‘at3’ must therefore be delayed until step 7 in the arc-
standard parsing.

B. THE CORE CLASSIFIER
Our parsing model’s architecture is similar to that of [25]
and [7] — utilizing a BiLSTM to first build a feature
embedding layer. The output of the embedding layer is
used as input to the BiLSTM layers. And the output of
these layers are then used as input to a more typical
multi-layer perceptron (MLP), as in [12]. This process
is depicted in Fig. 4. The input layer is the words and
part-of-speech (POS) tags. They are fed to the embedding
BiLSTM layer.The embedding layer generates the vector
representation of the input word and part-of-speech tag,
as show in Fig 5a and Fig 5b respectively. These vectors
are concatenated and used as input to the LSTM layers
(forward LSTM layer and backward LSMT layer). The
output of the LSTM layers are concatenated to produce
the input for the Label MLP and Arce MLP layers, which
predict the parse action and the grammatical category of the
dependency relations, respectively. The BiLSTM provides
many beneficial features; primarily, it encodes positional
information, and it significantly reduces the need for feature
engineering.

The flow of a sentence through the model during parsing
is as follows: each sentence token t has associated with it
a word form, a lemma, a universal part-of-speech tag, and
a language-specific part-of-speech tag. Some combination
of these decided by the model configuration are passed
to an embedding layer e to produce eform(t), elemma(t),
eutag(t), and extag(t) respectively. Fig. 5a and 5b present
a snippet of word form embedding and part-of-speech tag
embedding that are obtained from the input words and POS
tags and fed in to the LSTM layers, as in Fig 4

The resulting vectors are then concatenated to form a
token embedding xt = e(t) (with e.g. e(t) = eform(t) ◦
eutag(t)). The word embeddings also include special tokens
for the root node of the sentence and for words outside of
the vocabulary of the word embeddings. The sequence of
token embeddings xt1 , xt2 , . . . , xtn is then passed through

FIGURE 4: A simplified view of the parser architecture part
way through parsing the sentence ‘the man hit the ball’: The
BiLSTM layer builds a feature embedding over the word
and POS embeddings Xt of the input tokens t, and given a
parser state (σ|man, hit|β,A) the multi-layer perceptrons
for classifying the arc and label are given the BiLSTM
embedded vectors for ‘man’ and ‘hit’ as input.

[1.00000e+05 2.80000e+02]
[4.50000e+01 4.50000e+01]
[1.90000e+01 1.90000e+01]

...
[9.07000e+02 9.07000e+02]
[1.00000e+00 1.00000e+00]]

...
[[1.00001e+05 1.00001e+05]
[1.00000e+05 1.00000e+05]
[0.00000e+00 0.00000e+00]

...
[0.00000e+00 0.00000e+00]
[0.00000e+00 0.00000e+00]]

(a) An example of embedding representation for word forms
[[1. 2. 9. 5. ... 16. 9. 17. 14.]
[1. 7. 0. 0. ... 0. 0. 0. 0.]
[1. 7. 0. 0. ... 0. 0. 0. 0.]

...
[1. 7. 0. 0. ... 0. 0. 0. 0.]
[1. 7. 0. 0. ... 0. 0. 0. 0.]]

(b) An example of embedding representation for part-of-speech tags

FIGURE 5: The embedding representation for word forms
and part-of-speech tags

the BiLSTM feature embedding layer to produce a second
sequence vt1 , vt2 , . . . , vtn = BiLSTM(xt1 , xt2 , . . . , xtn).

VOLUME 4, 2016 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Once the parser has generated the feature embedding
for the sequence of tokens, it begins stepping through
the shift-reduce algorithm it has been configured to use,
utilizing the model as an oracle. For a parser configuration
C = (σ|s1 . . . sn, b1 . . . bm|β,A), a lookup is done over
the BiLSTM embedding of the top n tokens on the stack
s1 . . . sn and bottom m tokens of the buffer b1 . . . bm to
obtain v = vs1 , . . . , vsn , vb1 , . . . , vbn , where m and n are
hyper-parameters of the model. In cases where some si or
bj do not exists, as there are fewer than n items on the
stack or fewer than m items on the buffer, a special token
vnone is used to represent vsi or vbj . With the vs calculated,
there are then two multi-layer perceptrons, MLParc and
MLPlabel. For the arc-eager parser, with base transitions
T = {Left-Arc,Right-Arc, Shift, Reduce}, MLParc

produces a score for each T ∈ T in the form of a tuple
as in Equation 1

MLParc(v) = (ScoreLeft-Arc(v), ScoreRight-Arc(v),

ScoreShift(v),

ScoreReduce(v))

(1)

Given a configuration C, not all transitions are necessarily
allowed due to the prerequisites of each transition, and so we
also define Ta to denote the set of valid transitions. We have
then that the transition made by the parser in configuration
C using Equation 2

arg max
T∈Ta

ScoreT (v) (2)

The primary difference between our parser and more
traditional transition-based parsing models is the BiLSTM
feature embedding. Our motivations for using the embed-
ding layer are two-fold; positional encoding, and the near-
elimination of feature engineering. The latter of these has
been a core motivation for using deep learning for parsing;
[12] use only 18 input features in their model, and similarly,
[27] use 21 input features in their graph-based model.
While these approaches are certainly an improvement on
the indicator features used by early parsing models, using
a BiLSTM feature embedding layer reduces this feature
engineering further through ‘architecture engineering’ [7].
The fact that the BiLSTM passes information in both
directions between cells allows the tokens’ feature embed-
ding vectors to encode information about the relationship
between tokens, allowing some of the features that might be
encoded by some feature engineering to be encoded directly
in the model. As one of the objectives of this study was
to design a multi-lingual parser, the reduction of feature
engineering was particularly important when designing the
model architecture.

Different languages have different structural rules, and so
to build an optimal parser without some feature embedding
layer would require feature engineering for each individual
language. By having the model learn this feature engineering
itself, we eliminate the need to construct optimal features

for each language and instead approximate more complex
features as part of our model to achieve our objective of
developing a parser with transfer learning capability. This
is not to say, however, that the requirement for feature
engineering was totally eliminated. In our model, we make
use of a context window to look-ahead in to the stack
and buffer in each parser configuration. This look-ahead
allows the model to gain additional contextual information
regarding the state of the parsing algorithm, much like the
context windows used in more classical approaches [12],
[27].

One of the major problems in parsing is the parsing of
long sequences of tokens, particularly for greedy parsers
such as transition-based parsers — a mistake early on
propagates throughout the entire parse, and has a knock-
on effect [12]. The use of context windows gives the
parsing models the ability to look somewhat in to the future
of the parsing sequence helps to eliminate this problem,
however the effectiveness of a BiLSTM embedding layer for
encoding long-distance relations allowed [24] to completely
forgo the use of context windows in their graph-based model
to completely eliminate feature engineering, although in
our testing we found that the quality of our model still
improved when using a small context window. Partner to
this issue is long-distance arc attachments; the parser must
somehow recognize that a child c with a distant head h are
associated, and ‘hold off’ on assigning a head to c when it is
presented with other candidate heads. Context windows help
alleviate this issue, however as we show in Section IV, the
BiLSTM layer in our solution helps to encapsulate distant
relations, improving the long-distance attachment abilities
of our parser.

C. ARC LABELING
The arc-eager and arc-standard algorithms utilize opera-
tions Left-Arcl and Right-Arcl, with l denoting the label
assigned to the arc. The set of transitions for the arc-
eager algorithm is then T = ({Left-Arc,Right-Arc} ×
L) ∪ {Shift, Reduce}, where L is the set of arc labels.
With 37 dependency relations in the Universal Dependency
Relations, there are 76 possible transitions. Given that the
distribution of these labels will be quite imbalanced — even
before separating by left and right arcs there are less than
1,000 instances of the 20 least-common labels in the English
Universal Dependencies Treebank out of over 200,000 arcs
— and given the large number of labels, the training data
gets quite sparse for some transition classes, even on larger
treebank.

Our solution to this problem is to have the main
classifier decide only between the transitions T =
{Left-Arc,Right-Arc, Shift, Reduce} and to offload the
labeling of arcs to a second multi-layer perceptron (MLP),
which takes the feature embeddings from the BiLSTM layer
along with the POS tag embedding to produce a label.
This approach significantly reduces the sparsity of data for
the main classifier and should create much more balanced

6 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

data. One caveat of this approach is that using two MLPs
somewhat increases the computational complexity of the
model and likely increases parsing and training time. This
impact may be insignificant, however, as when doing joint
label and arc classification the complexity of the MLP is
likely higher than the complexity of either of the individual
perceptrons.

D. DESIGNING A MULTI-LINGUAL PARSER
A core objective of this paper is to develop a language-
agnostic, multi-lingual parser suitable for languages with
limited-resources. Some of the main challenges are: firstly,
because languages follow very roughly the same structure,
there are significant differences in grammatical structure
between them. These differences mean that while a given
parser architecture may be very effective for one language,
it may perform poorly on others. As has been discussed,
we attempt to alleviate this problem by using a BiLSTM
feature embedding layer to implement ‘architecture engi-
neering’ as opposed to more classical feature engineering.
The architecture of our model allows it to learn language-
specific features and eliminate the need for hand-tuning
the optimal features for each language. From our results,
it is clear that our parser achieves this goal, performing
with near-state-of-the-art accuracy on a wide variety of
languages. Another core problem to data-driven parsing
is the availability of data; whilst some languages such as
English have many accurate dataset available, most other
languages, particularly languages with limited-resources,
have little-to-no data with which to train a machine learning
classifier. As we demonstrate through our results, our parser
tackles this problem effectively through transfer learning.

E. TRANSFER LEARNING
In transfer learning, the knowledge gained by a model in
one domain is used to enhance the ability of a model on a
different, but related task [21, pp. 526-527]. In this paper,
we explore the possibility of training a baseline model on
a language with a large amount of available data, such as
English, and to then re-train the model on a related language
with a considerably smaller dataset, such as Kurmanji. Our
hypothesis is that the model might transfer some of the
knowledge gained by training on a very large dataset that
is not captured by smaller dataset. Having this additional
knowledge could improve the accuracy of the parser on the
resource-limited language when compared to training on a
resource-limited language alone. Our results help to confirm
this hypothesis; our parser performance considerably im-
proves when we pre-train it on a large treebank for parsing
resource-limited language, such as Kurmanji and Kazakh.

F. MODEL OPTIMIZATION AND TRAINING
We build our training dataset by using a gold oracle to
generate a sequence of parser configurations and their
corresponding optimal transitions for each sentence in our
training dataset. We generate batches of sentences to be

fed to the model, and for each training instance the tokens
in the sentence are fed to the BiLSTM layer to generate
a dynamic embedding for each token. The arc MLP uses
these embeddings to evaluate probabilities for what it thinks
is the optimal transition for each configuration, and the
softmax cross-entropy loss is calculated over the transition
probabilities versus the optimal transition. This loss, plus
an L2-regularization loss is minimized using the Adam
optimizer [28] over the set of model variables.

Following [7], we train the BiLSTM feature embedding
jointly with the parser in order to ensure the embedding
is appropriate for the parsing problem. This is in contrast
to more traditional methods, where an embedding layer is
often built before-hand on a large text corpus using a more
general model, such as a word2vec embedding [29] or
GloVe embedding [30], [31]. Our parser does, however, have
the ability to use pre-trained word embedding to be used in
the embedding layer that is used as input to the BiLSTM,
however we found the impact of this negligible.

There were a number of hyper-parameters to tune for
this model. The ratios/rates for different hyper-parameters
are shown in Table 5; primarily the layer sizes and context
window sizes. Due to the complexity of the model and
size of the English Universal Dependencies treebank, which
was used for most of the hyper-parameter tuning, hyper-
parameters were tuned using a grid search on a subset of
the treebank — 1200 sentences, with additional tuning on
3000 sentences to verify that the parameters scale well —
and then the model was trained on the entire dataset. Other
model parameters that were experimented with included the
L2 regularization coefficient, and the droupout rate. We
found that for the labeling MLP, adding dropout slowed
training and did not prevent overfitting any more than using
L2 regularization alone and so dropout was used only for
the label MLP. We theorize that this is due to the relative
sparsity of the data — having two similar arc MLP input
sequences is unlikely; the BiLSTM layer means that even
two configurations with the same words in the context
window will not have identical inputs to the multi-layer
perceptron, as the token embedding will be affected by the
tokens outside the context window. That it helped reduce
overfitting for labeling, however, suggests that the labeling
task was less sparse, and so less dependent on sentence-
specific context.

An approach that has been used in the past for training
parsing models is error exploration, in which the parser
is allowed to make incorrect decisions and attempts to
build the most optimal tree given that the mistake has been
made [10]. This artificially increases the data size and theo-
retically allows the parser to ‘recover’ from mistakes made
earlier in the transition sequence. Error exploration requires
a dynamic gold oracle, which considerably increases the
complexity of the training procedure for a model, and from
the ablation experiments of [7] there is very little to be
gained from training with error exploration when using
architectures like ours; [25] don’t utilize error exploration

VOLUME 4, 2016 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5: The hyperparameters for the final model.

Layer Parameter Value

MLPs Nodes in MLParc (Layer 1, Layer 2) 300, 300
Nodes in MLPlabel (Layer 1, 2, 3) 300, 400, 500

MLP Input Stack window size 3
Buffer window size 2

BiLSTM Nodes in each LSTM Cell (BiLSTM Layer 1, 2) 200, 200

BiLSTM Input Word Embedding Size 300
Tag Embedding Size 50

Misc L2 normalisation coefficient 5e−7
MLParc dropout rate 0.3

TABLE 6: A CoNLL-U Formatted parse of ‘The man hit the ball.’

ID Token Lemma UPOS XPOS Features Head Relation type DEPS Misc

1 The the DET DT - 2 det - -
2 man man NOUN NN - 3 nsubj - -
3 hit hit VERB VBD - 0 root - -
4 the the DET DT - 5 det - -
5 ball ball NOUN NN - 3 dobj - -
6 . . PUNCT . - 3 punct - -

in their joint tagger and parser, and still achieve impressive
results. We therefore did not make use of error exploration
when training our model. One way we theorize that error
exploration may be of use is when training on languages
with smaller dataset; the artificial inflation of the dataset
through error exploration could help alleviate the issues
caused by having a small dataset.

G. DATA
For our experiments, we used the Universal Dependencies
treebanks1. Universal Dependencies provide treebanks for
a number of languages in a common format. The format
used by the Universal Dependencies treebanks is CoNLL-
U [32], as shown in Table 6. The treebank provides a number
of fields for each token in a sentence. These fields are: a
numerical token id; the token itself; the lemma or stem of the
token; universal part-of-speech tags; language specific part-
of-speech tags; additional features of the token; the head of
the token; the dependency relation; additional dependency
graph detail; and a miscellaneous information field. Most
important to our work is the token, lemma, part-of-speech
tags, and of course the token’s head and dependency rela-
tions. Typically, a language processing pipeline would be
provided with raw text requiring tokenization, stemming,
and tagging before parsing. By using the Universal Depen-
dencies treebanks we are provided with part-of-speech tags,
and the lemma field provides the equivalent of stemmed
words. This allows us to abstract away the details of acquir-
ing these features and also eliminates the error introduced
by imperfect taggers and stemmers, allowing a more direct
comparison of our parser with other parser implementations.
There are different versions of the treebank available, where
each new version introduces data for new languages. The
universal dependency treebank has been used extensively

1Available at: http://universaldependencies.org/

in recent years for parsing and part-of-speech tagging of
natural language text [33] [34] [35] [36]. For this study we
have used version 2.0 [37]

IV. RESULTS
To evaluate our baseline parser, we use common metrics
for parser evaluation; unlabeled attachment score (UAS),
and labeled attachment score (LAS). UAS takes in to
account only the head-child dependency relation between
two tokens. LAS also considers the head-child dependency
relation as well as the labeling of the dependency arcs [38].

To evaluate the accuracy of our parser we make use of the
CoNLL-X evaluation script2, with some minor modifications
to provide more detailed information about long-distance
head attachment. It provides a number of useful metrics,
such as head attachment accuracy according to dependency
distance, and analysis of the most common errors made by
the parser.

When evaluating the parser, as is typical with natural
language tasks we use three dataset: training set, devel-
opment set, and test set. The training set is used for
training the machine learning classifier, and during training
its performance is evaluated on the development set to
allow for hyper-parameter tuning of the neural network.
Once the optimal hyper-parameters for the development set
have been found, the overall performance of the model
is evaluated on the testing dataset. This guarantees that
the model generalizes well to unseen data (such as test
data). The Universal Dependencies dataset provide each of
these dataset for many language to ensure consistency when
evaluating multiple parsers.

For a point of comparison, we look at the performance
of various parsers submitted to the CoNLL 2017 Shared

2Available at: https://github.com/elikip/bist-
parser/blob/master/barchybrid/src/utils/eval.pl

8 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 7: An overview of the datasets used for
experimentation and testing.

Treebank Language Training Sentences Testing Sentences

af Afrikaans 1315 425
en English 12543 2077
fa_seraji Farsi 4798 600
kk_ktb Kazakh 31 1047
kmr_mg Kurmanji 20 734
tr_imst Turkish 3685 975
zh_gsd Chinese 3997 500

Task3 for two reasons: (i) because we are using the same
dataset that are used by the parsers in that shared task, and
(ii) we are evaluating our parser using the same standard
evaluation metrics used in that shared task as opposed to
the new evaluation metrics used in the CoNLL Shared Task
2018 [39]. Thus we can report direct comparison of our
paser with the the top performing parsers in the shared
task. The detail of the dataset size for different languages
is shown in Table 7.

To evaluate our parser’s versatility and language indepen-
dent feature, we experimented on languages with different
grammatical complexities and dataset sizes. Choosing lan-
guages with diverse linguistic characteristics ensured that
we were not optimizing our parser too heavily for one
language family, as a large motivation for this paper was
to build a parser that performs well on any language.
We segment our languages in to ‘large’, ‘medium’ and
‘small’ treebanks. Our large treebank languages include
English, Persian, Turkish and Chinese. Along side these
we tested Afrikaans to gain an idea of the applicability of
transfer learning to medium-resource languages and chose
Kazakh and Kurmanji to experiment with transfer learning
on less-resource languages, where the training set is between
20 and 31 sentences. Each resource-limited language was
fairly close linguistically to a larger language; Afrikaans to
English, Kurmanji to Persian, and Kazakh to Turkish. We
attempt to exploit linguistic similarities among the selected
languages when using transfer learning.

As shown in Table 8, our parser shows very promising
unlabeled attachment scores across most languages, coming
close to the most accurate parser submitted to the shared
task on parsing in English, Kurmanji, and exceeding the best
parser in Kazakh, demonstrating our parser’s versatility in
parsing a variety of language families with good accuracy.
While our parser shows good head attachment accuracy,
labeling accuracy was lower than the top state-of-the-art
parsers, for all languages other than Kazakh, however on
some treebanks, such as Kurmanji, we still would have
placed in the top ten parsers for LAS, out of 33 submitted
to the shared task.

Interestingly, our parser appears to perform very well
on very resource-limited languages, performing better than
state-of-the-art on Kazakh and coming very close on Kur-

3http://universaldependencies.org/conll17/

TABLE 8: Unlabeled Attachment Scores and Labeled
Attachment Scores on English, Afrikaans, Kurmanji,
Persian, Turkish, Kazakh and Chinese versus the best
scoring parser in the CoNLL 2017 Shared Task for

different languages.

This Work CoNLL 2017
Treebank UAS LAS UAS LAS

af 66.95 51.44 - -
en 80.70 65.95 84.74 82.23
fa_seraji 82.49 62.13 89.64 86.31
kk_ktb 52.96 29.84 45.72 29.22
kmr_mg 53.68 35.91 54.73 47.53
tr_imst 54.72 38.05 69.62 62.79
zh_gsd 70.10 46.44 72.39 68.56

manji, the two smallest treebanks we used to evaluate our
parser.

A. MODEL OPTIMIZATION AND HYPERPARAMETER
TUNING

Through hyper-parameter tuning with a relatively fine-
grained grid search, we found optimal parameters detailed
in Table 5. Particularly interesting were the stack and
buffer window sizes and experiments to optimize which
features to use. The most optimal window sizes were 3
and 2 for the stack and buffer respectively. We theorize
that when increasing the size of the windows, the data
sparsity increased, leading to a reduced ability for the
parser to generalize for larger window sizes. In a similar
vein, we found that using language-specific part-of-speech
tags yielded considerably poorer accuracy on both the
training and development datasets than the universal part-
of-speech tags, and we attribute this to the sparsity of
the data when using language-specific tags. The difference
between training and development accuracy is larger when
using language-specific tags than universal tags (4.05% and
2.65%, respectively). We found that when using language-
specific tags more overfitting is occurring, reducing model’s
ability to generalize to unseen sentences.

B. LONG DISTANCE DEPENDENCIES

Comparing our parser on parsing long distance dependen-
cies with the Stanford parser (the best performing parser in
the CoNLL 2017 Shared Task), it can be noted from Table 9
that despite being slightly less accurate overall, our parser
excels at long-distance parsing; for attaching arcs a distance
greater than 6 tokens away, and for tokens a distance of
5 away, our parser out-performs the Stanford parser with
regards to head attachment F1 score. This reinforces our
hypothesis that the BiLSTM embedding layer we use allows
for more accurate long-distance head attachment by encod-
ing information about these long-distance dependencies in
the token embedding generated by the BiLSTM.

VOLUME 4, 2016 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 9: Precision, Recall, and F1 Score of head
attachments by attachment distance on the English Web

Treebank Universal Dependencies dataset.

This Work Stanford Parser
Distance Precision Recall F1 Precision Recall F1

To root 91.12 88.09 89.58 84.68 84.52 84.60
1 89.99 94.52 92.20 91.43 92.19 91.81
2 81.80 74.30 77.87 85.87 88.34 87.09
3 78.36 73.45 75.83 80.69 81.15 80.92
4 71.34 71.44 71.39 73.98 71.97 72.96
5 68.08 61.85 64.82 64.26 61.90 63.06
6 56.36 56.78 56.59 61.68 57.02 60.42
7+ 61.70 66.71 64.12 64.45 58.15 61.14

TABLE 10: Unlabeled Attachment Scores and Labeled
Attachment Scores on languages with and without

pre-training (p.t.) on larger dataset. en = English, fa_seraji
= Farsi, and tr_imst = Turkish

Treebank Parser UAS LAS

af This work 66.59 51.44
This work (p.t. en) 80.33 56.27

kk_ktb This work 52.96 29.84
This work (p.t. tr_imst) 52.13 32.26
This work (p.t. en) 60.96 36.78

kmr_mg This work 53.68 35.91
This work (p.t. fa_seraji) 60.24 56.59

C. TRANSFER LEARNING
Making use of Deep Learning for transfer learning proved
very effective across different languages. Comparing our
results to the CoNLL 2017 Shared Task, we find that our
parser performs with accuracy above the state-of-the-art for
languages with small dataset when pre-training the model
on a language with more available data.

With lower than expected results when pre-training the
Kazakh model on Turkish (where Kazakh and Turkish very
related to each other), we anticipated that this was a result
of our parser’s poor accuracy on Turkish. By pre-training
the Kazakh model on the English dataset, we achieved much
higher UAS and LAS scores, indicating that an accurate pre-
trained model on a language from the same language family
can be a better choice for transfer learning than an inaccurate
but related language’s model. As shown in Table 10. The
parser accuracy improved by 13.84% and 4.83% for UAS
and LAS, respectively. Moreover, pre-training our parser on
Farsi dataset for parsing Kurmanji we achieve an improved
UAS of 6.56% and LAS by 20.68%. Finally, pre-training our
parser on English dataset for parsing Kazakh, the parser’s
accuracy is improved by 8% and 6.94% for UAS and LAS.
respectively.

Table 11 show the parser performance compared to the
top performing parser in the CoNLL Shared Task 2017 for
Kurmanji and Kazakh. Our parser achieves higher accuracy
than the stat-of-the-art parser. Our proposed model achieve
a difference of 5.51% for UAS and 9.06% for LAS on
Kurmanji and 15.24% for UAS and 7.56% for LAS on

TABLE 11: Unlabeled Attachment Scores and Labeled
Attachment Scores on languages with pre-training (p.t.) on

larger dataset versus the highest accuracy parser in the
CoNLL 2017 Shared Task for two of the most

resource-limited languages.

Treebank Parser UAS LAS

kmr_mg Best CoNLL 2017 54.73 47.53
This work (p.t. fa_seraji) 60.24 56.59

kk_ktb Best CoNLL 2017 45.72 29.22
This work (p.t. en) 60.96 36.78

Kazakh.

V. CONCLUSIONS
In this paper we have presented a deep learning based archi-
tecture for a natural language parser, and have investigated
the qualities of our parser that allow it to do so.

The Universal Dependencies dataset used both by us and
the CoNLL Shared Task 2017 provide the ability to compare
our parsers performance between languages on standardized
dataset, and to easily investigate the effectiveness of transfer
learning to natural natural text parsing.

A Particularly interesting result is our parser’s perfor-
mance on resource-limited languages, consistently perform-
ing at, or better than the level of the best known parsers. We
further improved on our advances in this critical problem for
natural language processing tasks by demonstrating highly
effective transfer learning techniques to achieve results far
above the state-of-the-art in Kurmanji and Kazakh.

That our parsing architecture performs comparably to
state-of-the-art parsers across a range of language families
demonstrates that BiLSTM feature embeddings allow for
effective multi-lingual parsing, setting our parser out from
other state-of-the-art parsers which are often more special-
ized for certain language families. Effectively eliminating
feature engineering, the BiLSTM allows the parser to adapt
to the target language through architecture engineering. The
BiLSTM layer also helps to solve issues such as long-
distance head attachments which are common problems
when parsing languages. Our architecture also shows very
promising results when parsing languages with very limited
resources.

As a particularly important challenge in data-driven pars-
ing, we have also shown that BiLSTM based parser can uti-
lize transfer learning to further improve parsing performance
on resource-limited languages. By pre-training our model on
related languages, we instill more general linguistic features
of the language family not captured by a smaller dataset,
transfer learning proves to be a very effective method for
enhancing parsing performance, achieving better than state-
of-the-art parsing accuracy on two topologically different
resource-limited languages.

One approach considered for this paper was to attempt to
exploit the sequential nature of shift-reduce algorithms, and
to utilize a Long Short Term Memory (LSTM) to classify

10 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

which transition to make. Our theory is that it may be
possible that common patterns in sentence structure, such
as ‘DET NOUN VERB DET NOUN’, as in ‘The man
hit the ball’, may be able to be captured by the LSTM.
An LSTM, however, is significantly more computationally
complex than a Multilayer Perceptron (MLP), and a large
motivation for us using a BiLSTM was to encode this type
of structural information in to the token embeddings; using
an LSTM for parsing may be better utilized alongside other
parsing methodologies.

With the limitations of our arc labeling multi-layer per-
ceptron holding back our parser somewhat, and while [7]
found success with a separate MLP for arc labeling on
the Penn Treebank and Chinese Treebank datasets, research
in to how to better label arcs given a feature embedding
layer could prove valuable. This split MLParc and MLPlabel

architecture may be useful in other parsing architectures, and
may prove more effective if the embedding is trained jointly
on both the arc and labeler MLPs.

REFERENCES
[1] D. Jurafsky and J. H. Martin, Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 1st ed. Prentice Hall PTR, 2000.

[2] J. Daniel and M. James, A., Speech and Language Processing: An Intro-
duction to Language Processing, Computational Linguistics, and Speech
Recognition. Pearson Education Inc, 2016.

[3] S. Jaf, “The application of constraint rules to data-driven parsing,” Ph.D.
dissertation, School of Computer Science, The University of Manchester,
7 2015.

[4] A. Farghaly and K. Shaalan, “Arabic natural language processing: Chal-
lenges and solutions,” ACM Computing Surveys, vol. 8, no. 4, pp. 1–22,
2009.

[5] M. Collins, “Head-driven statistical models for natural language parsing,”
Computational Linguistics, vol. 29, no. 4, pp. 589–637, 2003. [Online].
Available: http://dx.doi.org/10.1162/089120103322753356

[6] L. Tesnière, Éléments de syntaxe structurale, E. Klincksieck, Ed. Editions
Klincksieck, 1959.

[7] E. Kiperwasser and Y. Goldberg, “Simple and accurate dependency
parsing using bidirectional lstm feature representations,” Transactions of
the Association for Computational Linguistics, vol. 4, pp. 313–327, 2016.
[Online]. Available: https://doi.org/10.1162/tacl_a_00101

[8] S. P. Abney, “Parsing by chunks,” in Principle-Based Parsing: Computa-
tion and Psycholinguistics. Kluwer, 1991, pp. 257–278.

[9] J. Nivre, “An efficient algorithm for projective dependency parsing,” in
Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT), 2003, pp. 149–160.

[10] Y. Goldberg and J. Nivre, “A dynamic oracle for arc-eager dependency
parsing,” in Proceedings of COLING 2012. The COLING 2012 Organiz-
ing Committee, 2012, pp. 959–976.

[11] C. Gómez-Rodríguez and D. Fernández-González, “An efficient dynamic
oracle for unrestricted non-projective parsing,” in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), 2015, pp. 256–261.

[12] D. Chen and C. D. Manning, “A fast and accurate dependency parser using
neural networks,” in EMNLP, A. Moschitti, B. Pang, and W. Daelemans,
Eds., 2014, pp. 740–750.

[13] J. Nivre and M. Scholz, “Deterministic dependency parsing of english
text,” in Proceedings of the 20th International Conference on Computa-
tional Linguistics, ser. COLING ’04, 2004.

[14] J. Nivre, “Algorithms for deterministic incremental dependency parsing,”
Comput. Linguist., vol. 34, no. 4, pp. 513–553, Dec. 2008. [Online].
Available: http://dx.doi.org/10.1162/coli.07-056-R1-07-027

[15] W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den Bosch, “TiMBL:
Tilburg memory based learner, version 5.0, reference guide,” Tilburg
University, ILK, Tech. Rep. ILK 03-10, 2003.

[16] H. Yamada and Y. Matsumoto, “Statistical dependency analysis with
support vector machines,” in In Proceedings of IWPT, 2003, pp. 195–206.

[17] Y. Zhao and Q. Zhou, “A SVM-based model for chinese functional chunk
parsing,” in Proceedings of the Fifth SIGHAN Workshop on Chinese
Language Processing, 2006, pp. 94–101.

[18] A. V. Miceli Barone and G. Attardi, “Dependency parsing domain adap-
tation using transductive SVM,” in Proceedings of the Joint Workshop on
Unsupervised and Semi-Supervised Learning in NLP, 2012, pp. 55–59.

[19] S. Jaf and A. Ramsay, “The selection a classifier for data-driven parsing,”
in the 12th International Workshop on Natural Language Processing and
Cognitive Science. Kraków, Poland: Libreria Editrice Cafoscarina, 2015,
pp. 39–49.

[20] J. Nivre and J. Hall, “Maltparser: A language-independent system for data-
driven dependency parsing,” in Proceedings of the Fourth Workshop on
Treebanks and Linguistic Theories, 2005, pp. 13–95.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT
Press, 2016.

[22] C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N. A. Smith,
“Transition-based dependency parsing with stack long short-term mem-
ory,” in Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), 2015, pp. 334–
343.

[23] M. Ballesteros, C. Dyer, and N. A. Smith, “Improved transition-based
parsing by modeling characters instead of words with LSTMs,” in Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language
Processing, 2015, pp. 349–359.

[24] W. Wang and B. Chang, “Graph-based dependency parsing with bidirec-
tional LSTM,” in Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), 2016, pp.
2306–2315.

[25] D. Q. Nguyen, M. Dras, and M. Johnson, “A novel neural network
model for joint POS tagging and graph-based dependency parsing,” in
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, 2017, pp. 134–142.

[26] M. A. Covington, “A fundamental algorithm for dependency parsing,” in
In Proceedings of the 39th Annual ACM Southeast Conference, 2001, pp.
95–102.

[27] W. Pei, T. Ge, and B. Chang, “An effective neural network model for
graph-based dependency parsing,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
1: Long Papers), 2015, pp. 313–322.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proceedings of the 3rd International Conference for Learning Representa-
tions, 2015.

[29] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,”
in Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2, ser. NIPS’13. USA:
Curran Associates Inc., 2013, pp. 3111–3119. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2999792.2999959

[30] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, “Learning
word vectors for 157 languages,” in Proceedings of the International
Conference on Language Resources and Evaluation (LREC 2018), 2018.

[31] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Doha,
Qatar: Association for Computational Linguistics, oct 2014, pp. 1532–
1543. [Online]. Available: https://www.aclweb.org/anthology/D14-1162

[32] Universal Dependencies, “CoNLL-U format,” http://
universaldependencies.org/ format.html, 2014, accessed: 2019-02-21.

[33] T. Boros, , S. D. Dumitrescu, and R. Burtica, “NLP-cube: End-
to-end raw text processing with neural networks,” in Proceedings
of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. Brussels, Belgium: Association for
Computational Linguistics, 2018, pp. 171–179. [Online]. Available:
https://www.aclweb.org/anthology/K18-2017

[34] Z. Li, S. He, Z. Zhang, and H. Zhao, “Joint learning of POS
and dependencies for multilingual universal dependency parsing,” in
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies. Brussels, Belgium: Association
for Computational Linguistics, oct 2018, pp. 65–73. [Online]. Available:
https://www.aclweb.org/anthology/K18-2006

VOLUME 4, 2016 11

http://dx.doi.org/10.1162/089120103322753356
https://doi.org/10.1162/tacl_a_00101
http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://www.aclweb.org/anthology/D14-1162
http://universaldependencies.org/format.html
http://universaldependencies.org/format.html
https://www.aclweb.org/anthology/K18-2017
https://www.aclweb.org/anthology/K18-2006

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[35] D. Q. Nguyen and K. Verspoor, “An improved neural network
model for joint POS tagging and dependency parsing,” in Proceedings
of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. Brussels, Belgium: Association for
Computational Linguistics, oct 2018, pp. 81–91. [Online]. Available:
https://www.aclweb.org/anthology/K18-2008

[36] G. Arakelyan, K. Hambardzumyan, and H. Khachatrian, “Towards
JointUD: Part-of-speech tagging and lemmatization using recurrent neural
networks,” in Proceedings of the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies. Brussels, Belgium:
Association for Computational Linguistics, 2018, pp. 180–186. [Online].
Available: https://www.aclweb.org/anthology/K18-2018

[37] J. Nivre, Ž. Agić, L. Ahrenberg, M. J. Aranzabe, M. Asahara, A. Atutxa,
M. Ballesteros, J. Bauer, K. Bengoetxea, R. A. Bhat, E. Bick, C. Bosco,
G. Bouma, S. Bowman, M. Candito, G. Cebiroğlu Eryiğit, G. G. A.
Celano, F. Chalub, J. Choi, Ç. Çöltekin, M. Connor, E. Davidson, M.-C.
de Marneffe, V. de Paiva, A. Diaz de Ilarraza, K. Dobrovoljc, T. Dozat,
K. Droganova, P. Dwivedi, M. Eli, T. Erjavec, R. Farkas, J. Foster,
C. Freitas, K. Gajdošová, D. Galbraith, M. Garcia, F. Ginter, I. Goenaga,
K. Gojenola, M. Gökırmak, Y. Goldberg, X. Gómez Guinovart,
B. Gonzáles Saavedra, M. Grioni, N. Grūzı̄tis, B. Guillaume, N. Habash,
J. Hajič, L. Hà Mỹ, D. Haug, B. Hladká, P. Hohle, R. Ion, E. Irimia,
A. Johannsen, F. Jørgensen, H. Kaşıkara, H. Kanayama, J. Kanerva,
N. Kotsyba, S. Krek, V. Laippala, P. Lê Hồng, A. Lenci, N. Ljubešić,
O. Lyashevskaya, T. Lynn, A. Makazhanov, C. Manning, C. Mărănduc,
D. Mareček, H. Martínez Alonso, A. Martins, J. Mašek, Y. Matsumoto,
R. McDonald, A. Missilä, V. Mititelu, Y. Miyao, S. Montemagni, A. More,
S. Mori, B. Moskalevskyi, K. Muischnek, N. Mustafina, K. Müürisep,
L. Nguyễn Thi., H. Nguyễn Thi. Minh, V. Nikolaev, H. Nurmi, S. Ojala,
P. Osenova, L. Øvrelid, E. Pascual, M. Passarotti, C.-A. Perez, G. Perrier,
S. Petrov, J. Piitulainen, B. Plank, M. Popel, L. Pretkalnin, a, P. Prokopidis,
T. Puolakainen, S. Pyysalo, A. Rademaker, L. Ramasamy, L. Real,
L. Rituma, R. Rosa, S. Saleh, M. Sanguinetti, B. Saulı̄te, S. Schuster,
D. Seddah, W. Seeker, M. Seraji, L. Shakurova, M. Shen, D. Sichinava,
N. Silveira, M. Simi, R. Simionescu, K. Simkó, M. Šimková, K. Simov,
A. Smith, A. Suhr, U. Sulubacak, Z. Szántó, D. Taji, T. Tanaka,
R. Tsarfaty, F. Tyers, S. Uematsu, L. Uria, G. van Noord, V. Varga,
V. Vincze, J. N. Washington, Z. Žabokrtský, A. Zeldes, D. Zeman, and
H. Zhu, “Universal dependencies 2.0,” 2017, LINDAT/CLARIN digital
library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles University. [Online]. Available:
http://hdl.handle.net/11234/1-1983

[38] S. Kubler, R. McDonald, J. Nivre, and G. Hirst, Dependency Parsing.
Morgan and Claypool Publishers, 2009.

[39] D. Zeman and J. Hajič, Eds., Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Universal Dependencies.
Brussels, Belgium: Association for Computational Linguistics, October
2018. [Online]. Available: http://www.aclweb.org/anthology/K18-2

SARDAR JAF Sardar Jaf is a senior lecturer
in Computer Science at the University of Sun-
derland, UK. He has strong research interest in
Artificial Intelligence, Data Science, and Cyber-
security. He has researched various problems in
natural language processing, including parsing;
textual entailment; information retrieval; language
identification etc. He received his PhD from the
University of Manchester, UK.

CALUM CALDER is a software engineer at
Bloomberg L.P. He has a strong passion for
Machine Learning and Data Analytics. His re-
search work includes data driven natural language
processing, and the acceleration of Random For-
est classifiers using GPU Computing. He has
explored the application shallow and deep learn-
ing algorithms to various classification tasks. He
received his Masters in Computer Science from
Durham University , UK.

12 VOLUME 4, 2016

https://www.aclweb.org/anthology/K18-2008
https://www.aclweb.org/anthology/K18-2018
http://hdl.handle.net/11234/1-1983
http://www.aclweb.org/anthology/K18-2

	Introduction
	Related Work
	Solution
	Transition Based Parsing
	The Core Classifier
	Arc Labeling
	Designing a Multi-lingual Parser
	Transfer Learning
	Model Optimization and Training
	Data

	Results
	Model Optimization and Hyperparameter Tuning
	Long Distance Dependencies
	Transfer Learning

	Conclusions
	REFERENCES
	Sardar Jaf
	Calum Calder

